Congruence, Similarity \& Geometrical Proof Question Paper

Course	EdexcellGCSE Maths
Section	4. Geometry \& Trigonometry
Topic	Congruence, Similarity \& Geometrical Proof
Difficulty	Very Hard

Time allowed: 40

Score: /31
Percentage: /100

Question 1

$P Q R S T$ is a regular pentagon.
R, U and T are points on a circle, centre O.
$Q R$ and $P T$ are tangents to the circle.
$R S U$ is a straight line.
Prove that $S T=U T$.

Question 2

The two triangles in the diagram are similar.

There are two possible values of \boldsymbol{X}.
Work out each of these values.
State any assumptions you make in yourworking.

Question 3

The diagram shows the side view of a step ladder with a horizontal strut of length 48 cm .
The strut is one third of the way up the ladder.
The symmetrical cross section of the ladder shows two similar triangles.

Work out the vertical height, $h \mathrm{~cm}$, of the ladder.

Not drawn
accurately

Question 4

C lies on a circle with diameter $A D$.
B lies on $A C$ and E lies on $A D$ such that $B E$ is parallel to $C D$.
$A B=21 \mathrm{~cm}, C D=18 \mathrm{~cm}$ and $B E=13.5 \mathrm{~cm}$.

Work out the radius of the circle.

NOT TO SCALE

Question 5a

NOT TO
SCALE

The diagonals of the cyclic quadrilateral $A B C D$ intersect at X.
Explain why triangle $A D X$ is similar to triangle $B C X$.
Give a reason for each statement you make.

Question 5b

$A D=10 \mathrm{~cm}, B C=8 \mathrm{~cm}, B X=5 \mathrm{~cm}, C X=7 \mathrm{~cm}$.
Calculate $D X$.
$D X=$
cm
[2 marks]

Question 6a

NOT TO
SCALE

A solid metal cone has radius 10 cm and height 36 cm .
Calculate the volume of this cone.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
cm^{3}
[2 marks]

Question 6b

The cone is cut, parallel to its base, to give a smaller cone.

NOT TO SCALE

The volume of the smaller cone is half the volume of the original cone.
The smaller cone is melted down to make two different spheres.
The ratio of the radii of these two spheres is $1: 2$.

Calculate the radius of the smaller sphere.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

